

Boost Productivity and Reliability

- Measures and compresses pulses in seconds
- Uses the MIIPS® auto-calibration and auto-compression technology
- Complete pulse shaping solution (includes computer, spectrometer and nonlinear optical detection)
- Most affordable pulse shaping solution
- Small footprint (6-inch cube)
- Winner of the 2009 PhAST / Laser Focus World Innovation Award

Eliminate Manual Tweaking

With Push-Button Pulse Characterization

Includes the MIIPS® technology:

MIIPS® is an automated procedure for measurement and compression of optical pulses. It uses a calibrated pulse shaper to introduce a set of reference phase functions and monitors their effect on spectrally resolved nonlinear response such as second harmonic generation.

Mathematical analysis of the recorded spectra provides a direct measurement of high-order pulse dispersion. The measured spectral phase can be compensated by the pulse shaper to compress the laser pulses to their transform limit at the target, without manual tweaking.

System Specifications

Number of pixels 128

Operating wavelength range* 700 - 900 nm

Maximum spectral window 200 nm

Shaping of spectral phase independent of repetition rate

*Contact us if a different wavelength range or spectral window is desired. We have delivered systems working in the 500-1800nm range.

Schematic

Recommended beam diameter ~2 mm

Dimensions L x W x H 150 x 150 x 150 mm $(6.0 \times 6.0 \times 6.0 \text{ in.})$

Biophotonic Solutions continuously follows a strict product improvement and evaluation program. Specifications are subject to change without notice.

Example showing accurate shaping before regenerative amplification

Reduces pulse duration from \sim 50s to \sim 35fs in most commercial regenerative amplifiers by removing third and fourth order dispersion. Call us to request system specific information.

Optics Express 14, 9537 (2006)